Exercice [2152] | 1 | Séries géométriques

Pour tout entier naturel n, on pose :

$$S_n = \sum_{k=0}^n \frac{1}{3^k} \qquad \text{et} \qquad T_n = \sum_{k=0}^n \frac{k}{3^k}$$

- (1). Montrer que la suite $(S_n)_{n\in\mathbb{N}}$ est croissante.
- (2). Exprimer S_n en fonction de n, puis déterminer $\lim_{n \to +\infty} S_n$.
- (3). En déduire que la suite $(S_n)_{n\in\mathbb{N}}$ est majorée par $\frac{3}{2}$.
- (4). Montrer que pour tout $n \in \mathbb{N}$, on a : $T_{n+1} = \frac{T_n + S_n}{3}$
- **(5).** Montrer par récurrence que, pour tout $n \in \mathbb{N}$, $T_n \leq 1$.
- **(6).** Montrer que la suite $(T_n)_{n\in\mathbb{N}}$ est croissante.
- (7). En déduire la convergence et la limite de la suite $(T_n)_{n\in\mathbb{N}}$

Pistes de réflexion

- (1). Revenir à la définition en déterminant le signe de $S_{n+1} S_n$.
- (2). Remarquer qu'il s'agit d'une somme du type $\sum_{k=0}^n q^k$, puis prendre la limite dans la formule obtenue.
- (3). Utiliser l'expressionde S_n pour en déduire un majorant de la suite.
- (4). Il suffit d'écrire ce qu'est T_{n+1} et de faire un petit changement d'indice.
- (5). On effectue le raisonnement par récurrence demandé.
- **(6).** On détermine le signe de $T_{n+1} T_n$.
- (7). Utiliser le théorème de la limite monotone.

Éléments de correction

(1). On étudie le signe de $S_{n+1}-S_n$ pour tout $n\in\mathbb{N}$

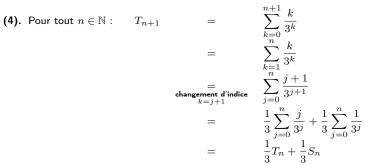
Pour tout
$$n \in \mathbb{N}$$
, $S_{n+1} - S_n = \sum_{k=0}^{n+1} \frac{1}{3^k} - \sum_{k=0}^n \frac{1}{3^k} = \frac{1}{3^{n+1}} \ge 0.$

Par conséquent, la suite $(S_n)_{n\in\mathbb{N}}$ est clairement croissante.

(2). On a directement que $S_n = \frac{1 - \left(\frac{1}{3}\right)^{n+1}}{1 - \frac{1}{3}} = \frac{3}{2} \left(1 - \left(\frac{1}{3}\right)^{n+1}\right).$

$$\text{Or } \lim_{n \to +\infty} \left(\frac{1}{3}\right)^{n+1} = 0 \text{ puisque } -1 < \frac{1}{3} < 1 \text{, donc } S_n \underset{n \to +\infty}{\longrightarrow} \frac{3}{2}.$$

(3). La suite $(S_n)_{n\in\mathbb{N}}$ est donc croissante. Si elle n'était pas majorée, elle ne pourrait pas converger. Or on vient de voir que $S_n \underset{n \to +\infty}{\longrightarrow} \frac{3}{2}$, donc elle est majorée, et elle l'est notamment par la valeur de sa limite, ici $\frac{3}{2}$.



(5). Pour $n \in \mathbb{N}$, on pose $\mathcal{P}(n)$: ' $T_n \leq 1$ '.

Montrons par récurrence sur n, que la propriété $\mathcal{P}(n)$ est vraie pour tout entier n.

— Initialisation : vérifions que la propriété $\mathcal{P}(n)$ est vraie au rang n=0, c'est à dire que $T_0=\sum_{k=0}^{\infty}\frac{k}{3^k}\leq 1$.

On a : $T_0 = \sum_{k=0}^0 \frac{k}{3^k} = 0$ et $0 \le 1$, donc on a clairement $T_0 \le 1$, et par suite, la

propriété $\mathcal{P}(0)$ est vraie.

— **Hérédité** : supposons que pour $n \in \mathbb{N}$, on ait $\mathcal{P}(n)$, c'est à dire $T_n \leq 1$, et montrons alors que l'on a $\mathcal{P}(n+1)$ c'est à dire $T_{n+1} \leq 1$.

On a dans un premier temps que : $T_{n+1} = \frac{1}{3}T_n + \frac{1}{3}S_n$.

Comme $S_n \leq \frac{3}{2}$, on a $\frac{1}{3}S_n \leq \frac{1}{2}$. Puisque par hypothèse de récurrence, $T_n \leq 1$, on a $\frac{1}{3}T_n \leq \frac{1}{2}$ et ainsi $\frac{1}{2}T_n + \frac{1}{3}S_n \leq \frac{1}{2} + \frac{1}{3} \leq 1$ et on a ainsi $\mathcal{P}(n+1)$

- a $\frac{1}{3}T_n \leq \frac{1}{3}$, et ainsi $\frac{1}{3}T_n + \frac{1}{3}S_n \leq \frac{1}{3} + \frac{1}{2} \leq 1$, et on a ainsi $\mathcal{P}(n+1)$.

 Conclusion: la propriété $\mathcal{P}(n)$ étant vraie au rang n=0 et héréditaire, elle est donc vraie pour tout entier n.
- **(6).** On étudie le signe de $T_{n+1} T_n$ pour tout $n \in \mathbb{N}$.

Pour tout
$$n \in \mathbb{N}$$
, $T_{n+1} - T_n = \sum_{k=0}^{n+1} \frac{k}{3^k} - \sum_{k=0}^n \frac{k}{3^k} = \frac{n+1}{3^{n+1}} \ge 0.$

Par conséquent, la suite $(T_n)_{n\in\mathbb{N}}$ est clairement croissante.

(7). La suite $(T_n)_{n\in\mathbb{N}}$ étant croissante majorée, elle converge vers un réel ℓ .

Compte-tenu de la relation $T_{n+1}=rac{T_n+S_n}{3}$, cette dernière vérifie ainsi la relation

 $\ell = \frac{\ell + \frac{3}{2}}{3} \text{ qui conduit après résolution à } \ell = \frac{3}{4}.$