EX. 1 Réf. 4939

1. Soit $g:[0;1] \longrightarrow \mathbb{R}$ une application continue.

Montrer, pour tout $n \in \mathbb{N}$, l'existence de l'intégrale $I_n = \int_0^1 \mathrm{e}^{-nx} g(x) \, \mathrm{d}x$.

- **2.** Calculer I_0 lorsque g est définie par :
 - **a.** $g: x \longmapsto x \mathrm{e}^{-x}$
 - **b.** $g: x \longmapsto \frac{\arctan(x)}{1+x^2}$
- 3. On revient au cas général.

Soit M un majorant de |g|, c'est à dire un réel tel que pour tout $x \in [0,1]$, $|g(x)| \leq M$.

Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.

4. Soit $f:[0;1]\longrightarrow \mathbb{R}$ une fonction de classe \mathcal{C}^1 telle que f(0)=1.

Pour tout entier $n \ge 1$, on pose $J_n = n \int_0^1 e^{-nx} f(x) dx$.

Montrer que la suite $(J_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.

EX. 1 | Éléments de réflexion | Pistes de recherche | Réf. 4939

- 1. Ce n'est pas une intégrale impropre...
- 2. a. On procède par intégration par parties.
 - b. L'intégration est directe ici.
- 3. On majore simplement I_n par le terme général d'une suite qui converge vers 0.
- **4.** On calcule J_n par intégration par parties et on applique les résultats des questions précédentes à f' qui est continue sur [0;1].

EX. 2 Réf. 4937

Soit p un entier naturel.

Pour tout entier naturel n, on note $S_n = \int_0^{+\infty} \frac{x^{p+1}}{e^x - 1} e^{-nx} dx$.

- **1.** Montrer l'existence de S_n .
- **2.** Pour a et b entiers naturels, avec b>0, on note $T(a,b)=\int_0^{+\infty}x^a\mathrm{e}^{-bx}\,\mathrm{d}x$.

Montrer l'existence de T(a,b) et calculer T(a,b) en fonction de a et b.

- **3.** Pour $n \ge 1$, montrer que pour tout réel x > 0, on a : $\frac{1}{e^x 1} = \sum_{k=1}^n e^{-kx} + \frac{e^{-nx}}{e^x 1}.$
- **4.** En déduire : $\forall n \geq 1, S_0 = (p+1)! \sum_{k=1}^n \frac{1}{k^{p+2}} + S_n.$
- **5.** Montrer que la suite $(S_n)_{n\in\mathbb{N}}$ est convergente.
- **6.** Déterminer la limite de la suite $(S_n)_{n\in\mathbb{N}}$.
- **7.** Donner alors la valeur de S_0 .

EX. 2 | Éléments de réflexion | Pistes de recherche | Réf. 4937

- 1. La borne 0 se gère par un prolongement par continuité, en la vorne infinie par une comparaison à une intégrale de Riemann.
- 2. On peut effectuer le changement de variable bx = t pour se ramener à une famille d'intégrales connues.
- 3. On fera intervenir la somme des termes d'une suite géométrique.
- 4. Il suffit de multiplier la relation obtenue par x^{p+1} et intégrer les deux membres de l'égalité.
- 5. La convergence de la suite $(S_n)_{n\in\mathbb{N}}$ s'obtient puisqu'il apparaît la somme partielle d'une série de Riemann convergente.

1

- **6.** On pourra remarquer que l'on peut majorer la fonction définissant S_n qui après intégration donnera un majorant de S_n qui converge vers 0.
- 7. C'est immédiat à partir de la question précédente.

EX. 3 | Réf. 4936

Soit φ la fonction définie sur \mathbb{R}^* par : $\varphi: \mid \mathbb{R}^* \longrightarrow \mathbb{R}$ $t \longmapsto \frac{t}{e^t - 1}$

1. Montrer que φ admet un prolongement par continuité en t=0. On notera encore φ la fonction ainsi prolongée.

On admet que cette fonction, admet, en 0 un développement limité à tout ordre $N \geq 0$ de la forme :

$$\varphi(t) = \sum_{k=0}^{N} b_k \frac{t^k}{k!} + \underset{t \to 0}{o} \left(t^N \right)$$

- **2.** Calculer b_0 , b_1 , b_2 et b_3 .
- 3. Montrer que $t \longmapsto \varphi(t) b_1 t$ est une fonction paire. En déduire b_{2n+1} pour tout $n \ge 1$.
- **4.** On pose pour tout réel x et tout réel t: $f(x,t) = e^{tx}\varphi(t)$. Montrer que $t \longmapsto f(x,t)$ admet un développement limité à tout ordre N au voisinage de 0, que l'on écrit :

$$f(x,t) = \sum_{k=0}^{N} B_k(x) \frac{t^k}{k!} + \mathop{o}_{t\to 0} (t^N)$$

et montrer que, pour tout $k \ge 0$, B_k est un polynôme unitaire de degré k. Exprimer ensuite $B_k(0)$ en fonction de b_k .

- **5.** Monter que pour tout $k \ge 0$, $B_k(1-x) = (-1)^k B_k(x)$. En déduire la valeur de $B_k(1)$ en fonction de b_k , pour tout $k \ge 1$.
- **6.** Montrer que pour tout $k \ge 1$, $B_k(x+1) B_k(x) = kx^{k-1}$.

EX. 3 | Éléments de réflexion | Pistes de recherche | Réf. 4936

- 1. On utilise les équivalents usuels en 0.
- 2. On procède au développement limité explicitement pour obtenir les coefficients recherchés par unicité du développement limité.
- 3. La parité est évidente, et le développement limité d'une fonction paire ne contient que des monômes de degré pair.
- 4. On obtient l'existence du développement limité par produit de développement limité, et on essaie d'exprimer les monômes du produit ainsi tronqué et qui donneront les polynômes B_k , à partir de la forme du produit de deux polynômes.

2

- 5. Il suffit de comparer f(1-x,t) et f(x,t) et de faire de même pour leur développement limité.
- **6.** C'est le même travail que précédemment, en travaillant avec f(x+1,t) f(x,t).

EX. 4 | Réf. 4935

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\left\{ \begin{array}{rcl} u_0 &=& 1 \\ \forall n\in\mathbb{N}, \ u_{n+1} &=& \frac{2n+2}{2n+5}\times u_n \end{array} \right.$

- 1. Montrer que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite ℓ que l'on déterminera.
- 2. Soit $\alpha \in \mathbb{R}$. On pose pour $n \in \mathbb{N}^*$: $v_n = \frac{(n+1)^\alpha u_{n+1}}{n^\alpha u_n}$ Déterminer α pour que la série de terme général $\ln{(v_n)}$ converge.
- **3.** En déduire que la série de terme général u_n converge.

4. Montrer que pour tout entier
$$n\in\mathbb{N}$$
 :
$$2\sum_{k=1}^{n+1}ku_k+3\sum_{k=1}^{n+1}u_k=2\sum_{k=0}^nku_k+2\sum_{k=0}^nu_k$$

5. En déduire la somme $\sum_{k=0}^{+\infty} u_k$.

EX. 4 | Éléments de réflexion | Pistes de recherche | Réf. 4935

- 1. On montre que u_n est décroissante minorée 0. Pour sa limite, on s'intéresse à la convergence de la série téléscopique $\sum_{(u_n)_{n\in\mathbb{N}}} (\ln{(u_{n+1})} \ln{(u_n)})$ qui donnera ensuite la convergence de la suite de terme général $\ln{(u_n)}$, puis celle de $(u_n)_{n\in\mathbb{N}}$.
- **2.** On commence par expliciter v_n , pour en effectuer un développement asymptotique de $\ln{(v_n)}$ à l'ordre 2.
- 3. On exprime u_n en fonction de la suite des sommes partielles de la série $\sum \ln{(v_n)}$ et de la somme de cette dernière pour donner un équivalent de u_n et s'assurer de la convergence de $\sum u_n$.
- **4.** La définition de la suite $(u_n)_{n\in\mathbb{N}}$ donne que $(2n+5)u_{n+1}=(2n+2)u_n$ et on somme ces égalités.
- **5.** De la relation précédente, on obtient une relation entre quelques termes de la suite $(u_n)_{n\in\mathbb{N}}$ et la suite des sommes partielles de la série $\sum u_n$.

EX. 5 | Réf. 4938

1. Question préliminaire : soient f et g deux fonctions définies sur un segment [a;b] avec a < b et continues sur ce segment.

Montrer que pour tout $\lambda \in \mathbb{R}$, $\int_a^b \left(f(t) + \lambda g(t)\right)^2 dt \geq 0$.

En déduire que : $\left(\int_a^b f(t)g(t) \, \mathrm{d}t \right)^2 \leq \int_a^b f^2(t) \, \mathrm{d}t \times \int_a^b g^2(t) \, \mathrm{d}t$

Dans tout ce qui suit, $f:[a;b]\longrightarrow \mathbb{R}$ une application de classe \mathcal{C}^1 telle que f(a)=0.

2. En justifiant et en utilisant la relation : $\forall x \in [a;b], f(x) = \int_a^x f'(t) dt$

montrer que : $\int_a^b \left| f(x) \right|^2 \, \mathrm{d}x \leq \frac{(b-a)^2}{2} \int_a^b \left| f'(x) \right|^2 \, \mathrm{d}x$

- 3. Caractériser le cas d'égalité dans l'inégalité précédente.
- **4.** Montrer que $\int_a^b |f'(x)f(x)| dx \le \frac{b-a}{2} \int_a^n |f'(x)|^2 dx$.
- 5. Caractériser le cas d'égalité dans l'inégalité précédente.

EX. 5 | Éléments de réflexion | Pistes de recherche | Réf. 4938

- 1. On intègre une fonction positive et continue, et on obtient alors un polynôme en λ dont on connaît le signe, et il suffit alors de mettre cela en correspondance avec le discriminant de ce dernier.
- 2. On applique l'inégalité précédente en écrivant $f'(x) = 1 \times f'(x)$ pour obtenir un premier majorant de |f(x)|, et on intègre alors l'inégalité obtenue.
- 3. Il ne peut y avoir égalité que si toutes les inégalités écrites sont des égalités, notamment celles portant sur f', ce qui donnera que |f'| est nulle et amènera à f nulle.
- 4. On pourra majorer |f(x)| par $u(x) = \int_a^x |f'(t)| dt$ et faire ensuite apparaître un majorant de $\int_a^b |f'(t)f(t)| dt$ de la forme $\int_a^b u'(t)u(t) dt$ que l'on sait primitiver. Il restera alors à appliquer l'inégalité de Cauchy-Schwarz.
- **5.** On vérifie que les fonctions affine conviennent et que ce sont les seules, car l'égalité dans l'inégalité de Cauchy-Schwarz ne s'obtient que lorsque les vecteurs sont colinéaires.