Thématique(s) de la semaine

AN05 | Séries numériques

• Reprise programme précédent Exemples de savoir faire à maîtriser

• Reprise programme précédent

Programme à venir...

Espaces vectoriels | Cadre général

Pour se préparer

EX. 1 Réf. 4294

- 1. Montrer que la série numérique $\sum \frac{1}{n^2+4n+3}$ est convergente.
- $\textbf{2. D\'{e}terminer } (a,b) \in \mathbb{R}^2 \text{ tels que}: \quad \forall n \in \mathbb{N}, \quad \frac{1}{(n+1)(n+3)} = \frac{a}{n+1} + \frac{b}{n+3}.$
- 3. En déduire la somme de la série $\sum \frac{1}{n^2 + 4n + 3}$

EX. 2 | Réf. 2838

Calculer la somme de la série $\sum_{n>1} \ln \left(1 - \frac{1}{(n+2)^2}\right)$.

EX. 3 Réf. 4276

Étudier la convergence de la série numérique $\sum_{n\geq 2}\left(\frac{3^n}{7^{n-2}}\right)$ et en calculer la somme.

EX. 4 | Réf. 4273

Étudier la convergence et calculer la somme de la série $\sum u_n$ où le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ est donné par :

$$\forall n \in \mathbb{N}, \quad u_n = \ln\left(1 - \frac{1}{(n+2)^2}\right)$$

EX. 5 | Réf. 4277

On considère la série numérique $\sum u_n$ où : $\forall n \in \mathbb{N}^*, \ u_n = \ln\left(\frac{n(n+2)}{(n+1)^2}\right)$.

- 1. Déterminer le terme général de la suite des sommes partielles de la série $\sum u_n$.
- 2. En déduire la convergence et la somme de la série $\sum u_n$.

On considère série numérique $\sum u_n$ où : $\forall n \in \mathbb{N}, \ u_n = \frac{n^3 - 3n^2 + 1}{(n+3)!}$.

- **1.** Déterminer $(a,b,c) \in \mathbb{R}^3$, $n^3 3n^2 + 1 = (n+3)(n+2)(n+1) + a(n+3)(n+2) + b(n+3) + c$.
- 2. En déduire alors l'expression du terme général de la suite des sommes partielles de la série $\sum u_n$.
- 3. Montrer que $\sum u_n$ est convergente, et en calculer la somme.

EX. 7 | Réf. 5379

On se propose dans cette série de déterminer la somme S de la série numérique $\sum \frac{n^2-2n+2}{2^n}$.

- 1. Montrer que cette série est convergente.
- **2.** Déterminer $(a,b,c) \in \mathbb{R}^3$ tel que : $\forall n \in \mathbb{N}, n^2 2n + 2 = an(n-1) + bn + c$.
- 3. En déduire alors la somme S de cette série.

EX. 8 Réf. 5380

On se propose dans cet exercice de déterminer la somme S de la série numérique $\sum \frac{n^2-4}{n!}$.

- 1. Montrer que cette série est convergente.
- **2.** Déterminer $(a,b,c) \in \mathbb{R}^3$ tel que : $\forall n \in \mathbb{N}, n^2-4=an(n-1)+bn+c$.
- **3.** En déduire alors la somme S de cette série.

EX. 9 Réf. 0617

On admet que $\sum_{k=1}^{\infty}\frac{1}{k^2}=\frac{\pi^2}{6}.$ Calculer $\sum_{k=1}^{\infty}\frac{1}{k^2(k+1)^2}.$

EX. 10 | Réf. 4293

- 1. Montrer que la série numérique $\sum_{n\geq 2} \frac{1}{(n+2)(n^2-1)}$ est convergente.
- **2.** Déterminer $(a, b, c) \in \mathbb{R}^3$ tels que :

$$\forall n \in \mathbb{N} \setminus \{1\}, \quad \frac{1}{(n+2)(n^2-1)} = \frac{a}{n+2} + \frac{b}{n-1} + \frac{c}{n+1}$$

3. En déduire la somme de la série $\sum_{n\geq 1} \frac{1}{(n+2)\,(n^2-1)}.$

EX. 11 Réf. 4276

Étudier la convergence de la série numérique $\sum_{n\geq 2}\left(\frac{3^n}{7^{n-2}}\right)$ et en calculer la somme.

EX. 12 | Réf. 4273

Étudier la convergence et calculer la somme de la série $\sum u_n$ où le terme général de la suite $(u_n)_{n\in\mathbb{N}}$ est donné par :

$$\forall n \in \mathbb{N}, \quad u_n = \ln\left(1 - \frac{1}{(n+2)^2}\right)$$

EX. 13 | Réf. 4277

On considère la série numérique $\sum u_n$ où : $\forall n \in \mathbb{N}^*, u_n = \ln\left(\frac{n(n+2)}{(n+1)^2}\right)$.

- 1. Déterminer le terme général de la suite des sommes partielles de la série $\sum u_n$.
- 2. En déduire la convergence et la somme de la série $\sum u_n$.

EX. 14 Réf. 4291

On considère série numérique $\sum u_n$ où : $\forall n \in \mathbb{N}, \ u_n = \frac{n^3 - 3n^2 + 1}{(n+3)!}$

- **1.** Déterminer $(a, b, c) \in \mathbb{R}^3$, $n^3 3n^2 + 1 = (n+3)(n+2)(n+1) + a(n+3)(n+2) + b(n+3) + c$.
- 2. En déduire alors l'expression du terme général de la suite des sommes partielles de la série $\sum u_n$.
- **3.** Montrer que $\sum u_n$ est convergente, et en calculer la somme.

EX. 15 Réf. 5286

Pour chacune des séries numériques $\sum u_n$ dont on donne l'expression du terme général u_n , étudier leur convergence.

$$u_n = \frac{n+1}{n^3 - 7}$$

$$u_n = \frac{n+1}{n^2 - 7}$$

$$u_n = \frac{n+1}{n-7}$$

$$u_n = \sin\left(\frac{1}{n^2}\right)$$

$$u_n = \frac{1}{\ln\left(n^2 + 2\right)}$$

$$u_n = \frac{\ln(n)}{\sqrt{n}}$$

$$u_n = \frac{n}{2^n}$$

$$u_n = \frac{2^n + 3^n}{n^2 + \ln(n) + 5^n}$$

$$u_n = \frac{n^{1000}}{n!}$$

EX. 16 | Réf. 4615

Dans tout cet exercice, on supposera que $\sum a_n$ est une série numérique absolument convergente à termes strictement

- **1.** Montrer que : $\forall (x,y) \in \mathbb{R}^2, \ 2|xy| < x^2 + y^2.$
- 2. Montrer que la série numérique de terme général $\frac{\sqrt{a_n}}{n}$ est convergente.

EX. 17 | Réf. 4616

On définit la suite $(S_n)_{n\geq 1}$ par : $\forall n\in\mathbb{N}^*,\, S_n=\sum_{i=1}^n\frac{(-1)^{k-1}}{n}.$

- 1. Montrer que la série numérique de terme général $\frac{(-1)^{n-1}}{n}$ n'est pas absolument convergente.
- 2. Montrer que les deux suites extraites $(S_{2n})_{n\geq 1}$ et $(S_{2n+1})_{n\geq 0}$ sont adjacentes.
- **3.** Qu'en déduire pour la série numérique de terme général $\frac{(-1)^{n-1}}{n}$?

EX. 18 | Réf. 4614

On considère la série numérique $\sum_{n\geq 1} u_n \text{ où } : u_n = \frac{\sin\left(\frac{1}{n(n+1)}\right)}{\cos\left(\frac{1}{n}\right)\cos\left(\frac{1}{n+1}\right)}.$

- 1. Montrer que $\sum_{n\geq 1}u_n$ est une série numérique convergente.
- **2.** Montrer que : $\forall n \in \mathbb{N}^*, \ u_n = \tan\left(\frac{1}{n}\right) \tan\left(\frac{1}{n+1}\right).$
- **3.** Déduire de ce qui précède $\sum_{n=1}^{+\infty} u_n$.

EX. 19 | Réf. 4610

Établir la convergence de la série de terme général $\frac{\ln(n+1) - \ln(n)}{\ln(n) \ln(n+1)}$ et en calculer sa somme.