Question de cours | Restitution de cours | Situation classique | 5 minutes | 2 points

Les énoncés ci-contre pourront vous être demandés explicitement avec toutes leurs hypothèses, avec ou sans démonstration:

- AL12 Théorème 5 Caractérisation des supplémentaires par la dimension
- AL12 Théorème 7 Concaténation de base de sous-espaces supplémentaires
- AL13 Proposition 4 Relations projecteur/symétrie | Schéma inclus

Pratique calculatoire | 20 minutes | 8 points

Montrer que deux sous-espaces sont en somme directe ou supplémentaires

ou

Montrer qu'un endomorphisme de \mathbb{R}^3 est un projecteur ou une symétrie vectorielle, puis déterminer ses éléments caractéristiques

Thématique(s) de la semaine | 30 minutes | 10 points

AL12 | Sommes de sous-espaces vectoriels

• Reprise programme précédent

AL13 | Projecteurs et symétries

• Reprise programme précédent

AL14 | Changement de bases pour les endomorphismes

• Reprise programme précédent

Exemples de savoir faire à maîtriser

• Reprise programme précédent

Programme à venir...

Réduction des matrices et des endomorphismes

Pour la pratique calculatoire

EX. 1 | Réf. 4046

Soit $f \in \mathcal{L}\left(\mathbb{R}^3\right)$ dont la matrice dans la base canonique est $A = \begin{pmatrix} 1 & 0 & 0 \\ -2 & 3 & 4 \\ 2 & -2 & -3 \end{pmatrix}$

- 1. Montrer que f est une symétrie vectorielle.
- 2. Déterminer les éléments caractéristiques de f.

EX. 2 | Réf. 4827

Sous-espaces en somme directe On considère F_1 et F_2 les deux sous-ensembles de $\mathbb{R}_2[X]$ donnés par :

1

$$F_1 = \{ P \in \mathbb{R}_2[X], P(0) = 0 \text{ et } P'(1) = 0 \}$$

 $F_2 = \text{Vect } (X, X^2).$

- **1.** Montrer que F_1 et F_2 sont deux sous-espaces vectoriels de $\mathbb{R}_2[X]$.
- **2.** F_1 et F_2 sont-ils en somme directe?

EX. 3 Réf. 4826

On considère F_1 et F_2 les deux sous-ensembles de \mathbb{R}^4 donnés par :

$$F_1 = \left\{ (x, y, z, t) \in \mathbb{R}^4, \ x + y + z + t = 0 \text{ et } x - y + z - t = 0 \right\}$$
$$F_2 = \text{Vect } ((1, 1, 1, 1), (1, -1, 1, -1)).$$

- **1.** Montrer que F_1 et F_2 sont deux sous-espaces de \mathbb{R}^4 .
- **2.** F_1 et F_2 sont-ils supplémentaires?

Sur l'ensemble du programme

EX. 4 Réf. 4045

On se place dans $\mathbb{R}_2[X]$ et on considère $F = \mathrm{Vect}\ (X,X^2)$ et $G = \mathrm{Vect}\ (1+X)$ deux sous-espaces de $\mathbb{R}_2[X]$. On admet que $\mathbb{R}_2[X] = F \oplus G$.

Déterminer la matrice dans la base canonique de $\mathbb{R}_2[X]$ de la symétrie vectorielle par rapport à F et parallèlement à G.

2

EX. 5 | Réf. 4050

Dans $\mathscr{M}_2(\mathbb{R})$, on pose :

$$F = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \, a - c + d = b + c - d = 0 \right\}$$
 et $G = \operatorname{Vect} \left(\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ -2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 4 & 1 \end{pmatrix} \right)$

Montrer que $\mathscr{M}_2(\mathbb{R}) = F \oplus G$.

EX. 6 | Réf. 4051

On définit l'application $f: \left| \begin{array}{ccc} \mathbb{R}_4[X] & \longrightarrow & \mathbb{R}[X] \\ P & \longmapsto & (1-X)P(0) + XP(1) \end{array} \right|$

- **1.** Montrer que $f \in \mathcal{L}(\mathbb{R}_4[X])$.
- **2.** Déterminer $f \circ f$. Qu'en conclure pour f?
- **3.** Déterminer alors les éléments caractéristiques de f.

EX. 7 Réf. 1413

Soit \mathcal{B} la base canonique de \mathbb{R}^5 . On considère l'endomorphisme f de \mathbb{R}^5 canoniquement associé à la matrice A ci-

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

- **1.** Déterminer des bases de $\operatorname{Im}(f)$ et $\operatorname{Ker}(f)$.
- **2.** Montrer que $\mathbb{R}^5 = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$.
- **3.** f est-il un projecteur?

EX. 8 Réf. 2831

Soit $F = \{ P \in \mathbb{R}[X], P(0) = P'(1) = 0 \}$ et $G = \mathbb{R}_1[X]$.

- **1.** Montrer que F est un sous-espace vectoriel de $\mathbb{R}[X]$.
- **2.** Montrer que $F \cap G = \{\tilde{0}\}$.
- **3.** Montrer que $\mathbb{R}[X] = F \oplus G$. On pourra penser à la division euclidienne...

EX. 9 Réf. 2834

Soit
$$F = \{P \in \mathbb{R}_3[X], P(0) = P(1)\}\$$
et $G = \{P \in \mathbb{R}_3[X], P'(0) = P'(1)\}.$

- 1. Déterminer une base et la dimension de F.
- 2. Déterminer une base et la dimension de G.
- **3.** La somme F + G est-elle directe?

EX. 10 Réf. 2833

On considère l'ensemble
$$E = \left\{ \begin{pmatrix} a-b & 0 & a+b-c \\ 0 & 2a-b+c & 0 \\ a+b-c & 0 & a-b \end{pmatrix}, \ (a,b,c) \in \mathbb{R}^3 \right\}.$$

- **1.** Montrer que E est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- 2. Déterminer une base et la dimension de E.
- **3.** Construire un supplémentaire de E dans $\mathcal{M}_3(\mathbb{R})$.

EX. 11 | Réf. 2836

Soient
$$F = \left\{ P \in \mathbb{R}_2[X], \int_0^1 P(t) \, \mathrm{d}t = 0 \right\}$$
 et $G = \mathrm{Vect} \, \left(1 + X + X^2 \right)$. Démontrer que $\mathbb{R}_2[X] = F \oplus G$.

3