

À noter & À garder en tête

Les éléments développés ci-après ne sont souvent que des indications pour aboutir à la solution, qui détaillent la plupart du temps un cheminement à suivre pour montrer le rèsultat demandé. La plupart des calculs sont laissés aux lecteurs. . . La mise en forme de certains calculs est faite de sorte à économiser de l'espace et donc du papier, mais il conviendrait de ne pas les écrire en ligne notamment comme cela l'est parfois.

Un peu de technique

Exercice [5305] 1 Noyau et image

Dans tout ce qui suit n désigne un entier naturel non nul, f et g désignant quant à eux deux endomorphismes de \mathbb{R}^n .

- **(1).** Montrer que l'on a : $\operatorname{Ker}(f) \cap \operatorname{Im}(f) = f(\operatorname{Ker}(f^2)).$
- **(2).** Montrer que : $f(\operatorname{Ker}(g \circ f)) = \operatorname{Ker}(g) \cap \operatorname{Im}(f)$.
- (3). Montrer que les deux assertions suivantes sont équivalentes :

Assertion n° 1 : $\operatorname{Ker}(f) \cap \operatorname{Im}(f) = \left\{\overrightarrow{0}\right\}$ Assertion n° 2 : $\operatorname{Ker}(f) = \operatorname{Ker}(f \circ f)$

Éléments de correction

(1). On raisonne par double inclusion.

Inclusion $\operatorname{Ker}(f) \cap \operatorname{Im}(f) \subset f\left(\operatorname{Ker}(f^2)\right)$: soit $y \in \operatorname{Ker}(f) \cap \operatorname{Im}(f)$.

Montrons alors que $y \in f(\text{Ker }(f^2))$ c'est à dire qu'il existe $x \in \text{Ker }(f^2)$ tel que y = f(x).

Comme $y \in \text{Ker}(f)$, on sait que $f(y) = \overrightarrow{0}$.

Comme $y \in \text{Im}(f)$, il existe $x \in \mathbb{R}^n$ tel que y = f(x).

On en déduit alors que : $f\left(y\right) = f\left(f(x)\right) \\ = f^{2}(x)$

et donc comme $f(y) = \overrightarrow{0}$, il vient que $f^2(x) = \overrightarrow{0}$, ce qui assure que $x \in \mathrm{Ker}\ (f^2)$.

Par suite, il existe donc bien $x \in \operatorname{Ker}(f^2)$ tel que y = f(x) et donc que $\operatorname{Ker}(f) \cap \operatorname{Im}(f) \subset f(\operatorname{Ker}(f^2))$.

Inclusion $f\left(\operatorname{Ker}\left(f^{2}\right)\right)\subset\operatorname{Ker}\left(f\right)\cap\operatorname{Im}\left(f\right)$: soit $y\in f\left(\operatorname{Ker}\left(f^{2}\right)\right)$.

Montrons alors que $y \in \text{Ker }(f) \cap \text{Im }(f)$, c'est à dire que $f(y) = \overrightarrow{0}$ et qu'il existe $x \in \mathbb{R}^n$ tel que y = f(x). Comme $y \in f(\text{Ker }(f^2))$, il existe donc $x \in \text{Ker }(f^2)$ tel que y = f(x) et donc que $y \in \text{Im }(f)$.

Or il est immédiat que $f(y)=f^2(x)$ et comme $x\in {\rm Ker \,} \left(f^2\right)$, on a $f^2(x)=\overrightarrow{0}$ ce qui assure que $f(y)=\overrightarrow{0}$ et donc que $y\in {\rm Ker \,} (f)$, et finalement que $y\in {\rm Ker \,} (f)\cap {\rm Im \,} (f)$ qui donnera l'inclusion $f\left({\rm Ker \,} \left(f^2\right)\right)\subset {\rm Ker \,} (f)\cap {\rm Im \,} (f)$.

(2). Raisonnons par double inclusion.

Inclusion $f(\operatorname{Ker}(g \circ f)) \subset \operatorname{Ker}(g) \cap \operatorname{Im}(f)$: soit $g \in f(\operatorname{Ker}(g \circ f))$.

Montrons que $y \in \operatorname{Ker}(g) \cap \operatorname{Im}(f)$ c'est à dire que $g(y) = \overrightarrow{0}$ et qu'il existe $x \in \mathbb{R}^n$ tel que y = f(x).

Comme $y \in f$ (Ker $(g \circ f)$), il existe $x \in \text{Ker } (g \circ f)$ tel que y = f(x) et donc $y \in \text{Im } (f)$.

Par suite, il vient que g(y)=g(f(x)) et comme $x\in {\rm Ker}\,(g\circ f)$ on a $g(f(x))=\overrightarrow{0}$ ce qui donne que $g(y)=\overrightarrow{0}$ et donc que $y\in {\rm Ker}\,(g)$.

Ainsi, $y \in \text{Ker}(g) \cap \text{Im}(f)$ et on a l'inclusion $f(\text{Ker}(g \circ f)) \subset \text{Ker}(g) \cap \text{Im}(f)$.

Inclusion Ker $(g) \cap \text{Im}(f) \subset f(\text{Ker } (g \circ f))$: soit $g \in \text{Ker}(g) \cap \text{Im}(f)$.

Montrons que $y \in f$ ($\mathrm{Ker}\ (g \circ f)$), c'est à dire qu'il existe $x \in \mathrm{Ker}\ (g \circ f)$ tel que y = f(x).

Comme $y \in \text{Im}(f)$, il existe $x \in \mathbb{R}^n$ tel que y = f(x).

Comme $y \in \mathrm{Ker}\,(g)$, alors $g(y) = \overrightarrow{0}$ et ainsi on a $g(f(x)) = \overrightarrow{0}$ ce qui assure que $x \in \mathrm{Ker}\,(g \circ f)$, et donc que $y \in f(\mathrm{Ker}\,(g \circ f))$ et on a l'inclusion cherchée.

(3). Raisonnons par double implication.

Supposons que $\operatorname{Ker}(f) \cap \operatorname{Im}(f) = \{\overrightarrow{0}\}\$: montrons que $\operatorname{Ker}(f) = \operatorname{Ker}(f^2)$.

Pour cela raisonnons par double implication.

Inclusion $\operatorname{Ker}(f) \subset \operatorname{Ker}\left(f^2\right)$: soit $x \in \operatorname{Ker}(f)$. Montrons que $x \in \operatorname{Ker}\left(f^2\right)$, c'est à dire que $f^2(x) = \overrightarrow{0}$. Comme $x \in \operatorname{Ker}(f)$, alors $f(x) = \overrightarrow{0}$ et donc $f(f(x)) = f\left(\overrightarrow{0}\right)$ et comme f est linéaire, il vient que $f(f(x)) = \overrightarrow{0}$ ce qui assure que $f^2(x) = \overrightarrow{0}$ et donc que $x \in \operatorname{Ker}\left(f^2\right)$ d'où l'inclusion cherchée.

Inclusion $\operatorname{Ker}\left(f^2\right)\subset\operatorname{Ker}(f)$: soit $x\in\operatorname{Ker}\left(f^2\right)$. Montrons que $x\in\operatorname{Ker}(f)$, c'est à dire que $f(x)=\overrightarrow{0}$. Comme $x\in\operatorname{Ker}\left(f^2\right)$, on a $f(f(x))=\overrightarrow{0}$ et donc $f(x)\in\operatorname{Ker}(f)$. Or $f(x)\in\operatorname{Im}(f)$, donc $f(x)\in\operatorname{Im}(f)\cap\operatorname{Ker}(f)$ et comme par hypothèse $\operatorname{Im}(f)\cap\operatorname{Ker}(f)=\left\{\overrightarrow{0}\right\}$, il vient que $f(x)=\overrightarrow{0}$ et par suite que $x\in\operatorname{Ker}(f)$ ce qui donne l'inclusion voulue.

Supposons que $\operatorname{Ker}(f) = \operatorname{Ker}(f^2)$: soit $y \in \operatorname{Ker}(f) \cap \operatorname{Im}(f)$. Montrons que $y = \overrightarrow{0}$.

Comme $y \in \text{Im}\,(f)$, il existe $x \in \mathbb{R}^n$ tel que y = f(x). Comme $y \in \text{Ker}\,(f)$, on a donc $f(y) = \overrightarrow{0}$ et donc $f^2(x) = \overrightarrow{0}$. Ainsi, $x \in \text{Ker}\,(f^2)$, et comme $\text{Ker}\,(f) = \text{Ker}\,(f^2)$, on a $x \in \text{Ker}\,(f)$ et donc $f(x) = \overrightarrow{0}$ ce qui amène $y = \overrightarrow{0}$.

On a donc $\operatorname{Ker}(f) \cap \operatorname{Im}(f) \subset \left\{\overrightarrow{0}\right\}$, la réciproque étant triviale puisque $\operatorname{Ker}(f)$ et $\operatorname{Im}(f)$ sont deux sous-espaces de \mathbb{R}^n donc contiennent le vecteur nul.

Mobiliser l'ensemble de ses connaissances

Exercice [5304] 2 Coeur et nilespace d'un endomorphisme

- (1). Dans cette question, E désigne un ensemble quelconque et f et g sont deux applications de E dans E.
 - (a). Montrer que si f et g sont injectives, alors l'application $g \circ f$ est injective.
 - **(b).** Montrer que si f et g sont surjectives, alors l'application $g \circ f$ est surjective.
- (2). Dans cette question, n désigne un entier naturel non nul, et f un endomorphisme de \mathbb{R}^n . Pour tout $k \in \mathbb{N}$, on rappelle que l'on note f^k la composée $f^k = \underbrace{f \circ f \circ \ldots \circ f}_{k \text{ fois}}$ et que par convention $f^0 = \operatorname{Id}$ où Id désigne l'application identité de \mathbb{R}^n .

Par ailleurs, pour tout $k \in \mathbb{N}$, on désigne par N_k le noyau de f^k et par C_k l'image de f^k .

- (a). Soit $k \in \mathbb{N}$. Montrer que $N_k \subset N_{k+1}$ et que $C_{k+1} \subset C_k$.
- **(b).** On note alors $N=\bigcup_{n=0}^{+\infty}N_k$ et $C=\bigcap_{n=0}^{+\infty}C_k$.

Montrer que N et C sont deux sous-espaces vectoriel de \mathbb{R}^n .

(c). Montrer que C et N sont stables par f, c'est à dire que l'on a :

$$\forall x \in C, f(x) \in C \text{ et que} : \forall x \in N, f(x) \in N$$

- **(d).** Démontrer que : $(f \text{ est injective}) \Leftrightarrow (N = \{\overrightarrow{0}\})$
- **(e).** Démontrer que : $(f \text{ est surjective}) \Leftrightarrow (C = E)$

Éléments de correction

- **(1).** On note $h = g \circ f$.
 - (a). Soient $x \in E$ et $x' \in E$ tels que h(x) = h(x'), et montrons que x = x'. On a donc g(f(x)) = g(f(x')). Comme g est injectif, on a donc f(x) = f(x'). Et par suite, comme f est injective, x = x', ce qui assure alors que h est injective.
 - **(b).** Soient $y \in E$. Montrons qu'il existe $x \in E$ tel que y = g(f(x)). Comme g est surjective, il existe $z \in E$ tel que y = g(z). Or $z \in E$ et f est surjective, donc il existe $x \in E$ tel que z = f(x). Finalement, on a qie y = g(f(x)) ce qui assure bien que h est surjective.
- (2).(a). Soit $k \in \mathbb{N}$.

Inclusion $N_k\subset N_{k+1}$: Soit $x\in N_k$. Montrons que $f^{k+1}(x)=\overrightarrow{0}$.

Or il est clair que $f^{k}\left(x\right)=f^{k+1}(x)$ ce qui assure que $f^{k+1}(x)=\overrightarrow{0}$ et donc que $x\in\mathrm{Ker}\left(f^{k+1}\right)$ et donc que $x \in N_{k+1}$.

Finalement, on a bien $N_k \subset N_{k+1}$.

Inclusion $C_{k+1} \subset C_k$: Soit $y \in C_{k+1}$. Montrons qu'il existe $x \in \mathbb{R}^n$ tel que $y = f^k(x)$.

Comme $y \in C_{k+1}$, il existe $z \in \mathbb{R}^n$ tel que $y = f^{k+1}(z)$. Or il est clair que $f^k(f(z)) = f^{k+1}(z)$.

Par suite, en posant x = f(z), il vient que $y = f^k(x)$ ce qui assure que $y \in C_k$.

Finalement, on a bien que $C_{k+1} \subset C_k$.

- **(b).** $N \subset \mathbb{R}^n$: en effet, N étant la réunion de sous-ensembles de \mathbb{R}^n , N est donc un sous-ensemble de \mathbb{R}^n .
 - $\overrightarrow{0}$ **appartient à** N : en effet, le vecteur nul appartient au noyau de f puisque par linéarité de f, on sait que $f(\overrightarrow{0}) = \overrightarrow{0}$, donc comme $\operatorname{Ker}(f) = N_0 \subset N$, on a bien $\overrightarrow{0} \in N$.

Stabilité de N par combinaison linéaire : soient $\left\{ \begin{array}{ll} \lambda & \in & \mathbb{R} \\ u & \in & N \\ v & \in & N \end{array} \right.$ et posons $w = \lambda u + v$. Montrons que $v \in N$, c'est à dire au'il existe $v \in N$

Comme $u \in N$, il existe k tel que $u \in N_k$ et de même il exite $k' \in \mathbb{N}$ tel que $v \in N_{k'}$. On peut supposer sans perte de généralité que $k \leq k'$.

Par suite, on a donc que: $f^{k'}(w)$ $= \lambda f^{k'}(u) + \underbrace{f^{k'}(u)}_{\substack{=\overrightarrow{0} \text{ car} \\ v \in N_{k'}}}$ $= \lambda f^{k'-k} \left(f^k(u)\right) + \overrightarrow{0}$ $= \int_{f^k(u)=\overrightarrow{0}}^{f^k(u)=\overrightarrow{0}} \lambda \underbrace{f^{k'-k} \left(\overrightarrow{0}\right)}_{\substack{=\overrightarrow{0} \text{ car} \\ v \in N_k}}$

et donc en posant k'' = k' on a bien que $w \in N_{k''}$ et donc que $w \in N$.

- $C \subset \mathbb{R}^n$: en effet, C étant l'intersection de sous-ensembles de \mathbb{R}^n , N est donc un sous-ensemble de \mathbb{R}^n .
 - $\overrightarrow{0} \in C$: en effet, tous les C_k étant des sous-espaces vectoriels de \mathbb{R}^n puisque par construction étant l'image des endomorphismes f^k , ils contiennent tous le vecteur nul, et donc le vecteur nul appartient à leur intersection.

Stabilité de C par combinaison linéaire : soient $\left\{ \begin{array}{ll} \lambda & \in & \mathbb{R} \\ u & \in & C \\ v & \in & C \end{array} \right.$ et posons $w = \lambda u + v$. Montrons que

 $w \in C$, c'est à dire que : $\forall k \in \mathbb{N}, w \in C_k$.

Puisque $u \in C$, on a : $\forall k \in \mathbb{N}, u \in C_k$.

De même : $\forall k \in \mathbb{N}, v \in C_k$.

Soit alors $k \in \mathbb{N}$. Puisque $u \in C_k$ et $v \in C_k$ et que C_k est un sous-espace vectoriel de \mathbb{R}^n puisque par construction étant l'image des endomorphismes f^k , $\lambda u + v \in C_k$ et donc $w \in C_k$.

Par suite, on en déduit donc que : $\forall k \in \mathbb{N}, w \in C_k$.

Ce qui signigie bien que $w \in C$ et que C est donc stable par combinaison linéaire.

(c). Stabilité de N par f: soit $x \in N$. Alors il existe $k \in \mathbb{N}$ tel que $x \in N_k$ et donc que l'on a $f^k(x) = \overrightarrow{0}$.

Il est alors clair que $f^{k+1}(x) = \overrightarrow{0}$ ce qui assure que $f^k f(x) = \overrightarrow{0}$ et donc que $f(x) \in \operatorname{Ker} (f^k) = N_k$ et donc que $f(x) \in N$.

Stabilité de C par f: soit $y \in C$. Alors pour tout $k \in \mathbb{N}$, $y \in C_k$ et donc $f(y) \in C_{k+1}$. Ainsi, $f(y) \in C_k$

 $\bigcap_{k=1}^{+\infty} C_k$, mais comme on a trivialement $f(y) \in C_0$ il vient que $f(y) \in \bigcap_{k=1}^{+\infty} C_k$ et donc $f(y) \in C$.

(d). Raisonnons par double implication :

- **Supposons** f injectif: pour tout $k \in \mathbb{N}$, l'application f^k est donc injective car c'est une composée d'injections, ce qui assure que $\operatorname{Ker}\left(f^k\right) = \left\{\overrightarrow{0}\right\}$ d'après la caractérisation des endomorphismes injectifs par le noyau. Ainsi, puisque pour tout $k \in \mathbb{N}$, $N_k = \left\{\overrightarrow{0}\right\}$, il vient que $N = \left\{\overrightarrow{0}\right\}$.
- **Supposons que** $N = \left\{\overrightarrow{0}\right\}$: on a donc que pour tout $k \in \mathbb{N}, N_k = \left\{\overrightarrow{0}\right\}$ car si l'un des noyaux contenait un autre vecteur que le vecteur nul, il serait nécessaire dans l'union de ces noyaux qui est N. Donc en particulier $N_1 = \operatorname{Ker}(f)$ est réduit au vecteur nul, ce qui assure le caractère injectif de f.
- (e). Supposons f surjectif: pour tout $k \in \mathbb{N}$, l'application f^k est donc surjective car c'est une composée d'injections, ce qui assure que $\mathrm{Im}\ (f^k) = E$ d'après la caractérisation des endomorphismes surjectids par leur image. Ainsi, puisque pour tout $k \in \mathbb{N}, \ C_k = E$, il vient que C = E
 - **Supposons que** C=E: on a donc que pour tout $k\in\mathbb{N},$ $C_k=E$, car si l'une de ces images était strictement incluse dans E, leur intersection le serait aussi. Donc en particulier, $C_1=\operatorname{Im}(f)$ est égal à E ce qui assure le caractère surjectif de f.