Consignes générales | Important

On attachera une grande importance à la rédaction des réponses, résoudre un exercice de mathématiques ne consiste nullement à produire un enchaînement ou enchevêtrement d'écritures algébriques sans explications ou commentaires. La longueur d'une réponse n'a rien à voir avec la longueur de la question...On fera donc apparaître tous les résultats et raisonnements intermédiaires qui ont permis d'aboutir à la solution.

Dans le cas où un(e) étudiant(e) repère ce qui lui semble être une erreur d'énoncé, il (elle) le signale très rapidement au professeur.

Un peu de technique

EX. 1 Réf. 5335

Pour $x \in \mathbb{R}$, on définit la suite $(S_n(x))_{n \in \mathbb{N}}$ par : $\forall n \in \mathbb{N}^*, \, S_n(x) = \sum_{k=1}^n \frac{(-1)^{k+1}}{k} x^k$.

- **1.** Justifier que : $\forall x \in]-1;1]$, $\ln(1+x) = S_{n+1}(x) + \int_0^x \frac{(-t)^{n+1}}{1+t} dt$.
- **2.** Étudier la convergence des deux suites $(S_{2n}(1))_{n\in\mathbb{N}^*}$ et $(S_{2n+1}(1))_{n\in\mathbb{N}}$.
- 3. Soit $x \in]-1;1[$. Démontrer que $(S_n(x))_{n \in \mathbb{N}}$ est convergente.
- 4. Montrer et que l'on a :

$$\forall x \in]-1;1], \ln(1+x) = \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k} x^k$$

- **5.** Si $x\in]-\infty;-1]\cup]1;+\infty[$, la suite $(S_n(x))_{n\in\mathbb{N}}$ est-elle convergente ?
- 6. Justifier les deux formules suivantes :

Formule 1

$$\ln(2) = \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k}$$

Formule 2

$$\ln(2) = \sum_{k=1}^{+\infty} \frac{1}{k2^k}$$

Mobiliser l'ensemble de ses connaissances

EX. 2 | Réf. 5334

Dans tout ce qui suit, n désignera un entier naturel non nul.

Toutes les variables aléatoires que l'on considèrera sont définies sur un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

On place n boules dans n boîtes numérotées de 1 à n selon le protocole suivant : chaque boule est placée uniformément et indépendamment des autres boules (une boîte pouvant donc contenir plus boules).

Si U_i désigne le numéro de la boîte contenant la boule numéro i, les variables aléatoires U_i sont ainsi indépendantes et suivent chacune la loi uniforme sur [1; n].

Pour tout $i \in [1; n]$, on note N_i la variable aléatoire égale au nombre de boules contenues dans la boîte n° i et $N = \sup (N_1, \ldots, N_n)$, c'est à dire que N désigne donc le plus grand nombre de boules contenues dans une des n boîtes.

- **1.** a. Déterminer, pour tout $i \in [1, n]$, la loi de la variable aléatoire N_i .
 - **b.** Les variables N_1, \ldots, N_n sont-elles indépendantes?
- 2. Montrer qu'il existe une suite $(\alpha_k)_{k\geq 1}$ de réels positifs et de limite $+\infty$ telle que, pour tout entier k non nul :

$$\left(\frac{\mathrm{e}}{\alpha_k}\right)^{\alpha_k} = \frac{1}{k^3}$$

Pour tout la suite, on admettra que : $\frac{\alpha_n \ln \left(\ln \left(n \right) \right)}{\ln \left(n \right)} \underset{n \to +\infty}{\longrightarrow} 3.$

- **3.** Montrer que N admet une espérance et que, pour tout $\alpha \in [1; n]$, on a : $\mathbb{E}(N) \leq n\mathbb{P}([N > \alpha]) + \alpha$.
- **4. a.** Établir que, pour tout $k \in [1; n]$, on a : $\mathbb{P}([N=k]) \leq \sum_{i=1}^{n} \mathbb{P}([N_i=k]) \leq \frac{n}{k!}$

- **b.** Montrer que pour tout entier non nul k, on a : $\frac{1}{k!} \leq \left(\frac{\mathrm{e}}{k}\right)^k$. **c.** En déduire que, pour tout $\alpha \in [1;n]$, on a : $\mathbb{P}\left([N>\alpha]\right) \leq n^2 \left(\frac{\mathrm{e}}{\alpha}\right)^{\alpha}$.